Parallel diffractive multi-beam ultrafast laser micro-processing

Watkins, Ken and Dearden, Geoff and Kuang, Zheng (2010) Parallel diffractive multi-beam ultrafast laser micro-processing. Doctoral thesis, University of Liverpool.

[img] PDF (PhD Thesis)
Zheng_Kuang_Thesis_final.pdf - Accepted Version
Restricted to Repository staff only
Available under License Creative Commons Attribution No Derivatives.

Download (16Mb) | Request a copy
[img] PDF (Abridged version)
KuangZhe_Feb2010_1333_(abridged).pdf - Accepted Version
Available under License Creative Commons Attribution No Derivatives.

Download (12Mb)

Abstract

During the last decade, ultrashort pulse lasers have been employed for high precision surface micro-structuring of materials such as metals, semiconductors and dielectrics with little thermal damage. Due to the ultra high intensity of focussed femtosecond pulses (I > 1012W/cm2), nonlinear absorption can be induced at the focus leading to highly localised material ablation or modification. This is now opening up applications ranging from integrated optics, through multi-photon induced refractive index engineering to precision surface modification for silicon scribing and solar cell fabrication. To ensure non thermal material processing, the input fluence (F) of the ultrashort pulse laser must be kept in the low regime (F ∼ 1Jcm-2), a few times above the well defined ablation threshold. Accordingly, μJ (10-6J) level pulse energy input is often required for ultrashort pulse laser fine micro/nano-surface structuring. Running at one kilohertz repetition rate, many current ultrashort pulse laser systems can provide mJ (10-3J) level output pulse energy. Accordingly, significant attenuation of the laser output is required for many applications and hence causes a great deal of energy loss. With this limitation in mind, holographic multiple beam ultrashort pulse laser processing, where the mJ pulse energy is split into many desired diffracted beams with arbitrary geometric arrangement, is proposed in this thesis. The multi-beam patterns are generated by phase modulation using computer generated holograms (CGHs) which are displayed on a Spatial Light Modulator (SLM). The ability to address these devices in real time and synchronize with scanning methods adds an additional flexibility to the processing. The results obtained in this thesis demonstrate high precision micro-fabrication of different kinds of materials with greatly increased processing efficiency and throughput, showing many potential industrial applications.

Item Type: Thesis (Doctoral)
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: ?? dep_eng ??
Depositing User: Anne McLaren
Date Deposited: 13 Dec 2011 15:08
Last Modified: 09 Oct 2014 11:50
URI: http://repository.liv.ac.uk/id/eprint/1333

Actions (login required)

View Item View Item
   
 

These pages are maintained by Library Staff @ University of Liverpool Library